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THEORY OF PULSE DISCHARGES IN A LIQUID MEDIUM */51

V.V.Arsenttyev 3 300 O

Study of certain phenomena occurring during underwater spark

discharges. Equations for the energy balance, the number of
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particles, and the rate of expansion of
for underwater discharges during the first quarter of a period.
It is shown that there exists a steady-state regime of channel
expansion and shock-wave motion, during which time the char-
acteristic parameters have constant values, A calculation is

made of these steady-state values,

1. A pulse discharge occurring in a liquid medium is accompanied by the
penetration of liquid particles into the channel, The channel is a system with
a variable number of particles, This is substantiated by studies on the electric
explosion of wires under water (Bibl,1l) as well as by the fact that the pressure
in the expanding channel remains constant for some time in the presence of an
insignificant change in plasma temperature (Bibl.2).

The penetration of particles is conditioned by the heating of the liquid at
the periphery cf the channel., The heating is chiefly due to collisions between
particles of plasma and liquid; the contribution of radiation and recombinations
in which third particles take part cannot be significant. The heating results
in a gaseous layer between the plasma and the liquid; particles from this layer
enter the spark channel where they undergo further heating, dissociation, and

partial ionization,

% Numbers in the margin indicate pagination in the original foreign text,
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The rate of penetration of particles into the channel is directly propor-
tional to the rate of energy transfer by collisions at the channel periphery and
inversely proportional to the vaporization energy per particle. The rate of

energy transfer from the ith plasma component may be set at
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Here, N; is the number of particles of the jth component, u is the mean
thermal velocity, m and my are the masses of the liquid molecule and plasma
particle, respectively; a is the channel radius, Ae, is the mean energy trans-
ferred during collision. From eg.(l.l) and from the gas-kinetic formula z =
= 1/huN/V, determining the number of collisions between molecules and unit area

per unit time, we obtain for the rate of penetration of the particles:

, xe’ 2 s ﬂMk./'NT'/' Q) v,m“/'
T ee— T — .2
N=Z 4(,‘) - %,(m+m‘), (1.2)

Here, q is the heat of vaporiZation per particle.

A theoretical calculation of the coefficient » is relatively unreliable,
since it involves extremely arbitrary assumptions., This coefficient may be de-
termined with the aid of any experimental study serving to plot the curve of the
discharge power and to determine an arbitrary channel characteristic, From an
analysis of the experimental findings by Skvortsov et al, (Bibl.2), we obtain /52
nw=1/2L,

2, The energy delivered to the underwater spark channel by the discharge
circuit is expended on increasing the internal energy of the channel and on gen-
erating a shock wave and radiation; the radiation loss is negligible. An anal-
ysis of the current oscillogram and discharge voltages indicates that, during

the first quarter of the period, the time dependence of the electric power is
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In the presence of low degrees of ionization, the mean energy per plasma
particle is

e=’/,kT+e¢/v ‘

where v is the number of atoms in a liquid molecule, and €, is the dissociation
energy of the molecule, Then, the change in internal energy of the channel per

unit time will be
= (Ne)’ = Y kN'T + Y ANT' + N'egl v (2.2)
For the power transmitted to the shock wave, the following relation ap-
plies:

NkTV,’ __ 2ka'NT
[ M (203)
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Here, a' is the rate of expansion of the channel, Equations of the shock-
wave theory indicate that half of this power is expended on compression of the
liquid and the other half, on its movement. The relations (1.2), (2.1), (2.2)

and (2.3) lead to the equations

3kv

N’ =le_ (NT) -__L(NT) (2.4)
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The system (2.4) contains three unknown functions (N, NT, a) and must be
closed with hydrodynamic equations,
3. The hydrodynamic equations in general form, with constraints for the

channel boundary and the shock-wave front cannot be used for solving the problem




because of their high nonlinearity.,

A simplifying factor is the experimentally established constancy of the
rate of channel expansion during the first quarter of the period (Bibl.2)., Dur-
ing its expansion, the discharge channel has the same effect on a liquid as the
effect that would be produced by an expanding cylindrical piston., Self-modeling
problems of the motion of a medium, displaced by a piston, have been considered
in various studies (Bibl.A, 6). In self-modeling problems, the conversion to
dimensionless variables transforms the equations of hydrodynamics to a system
of ordinary differential equations, However, even at constant rate of piston ex-
pansion in water, these equations cannot be integrated in analytic form.

Under such conditions, an additional simplifying factor is required; the
incompressibility of the fluid between the channel and the shock front could be
adopted as such a factor since, in this region, the fluid is compressed by the
shock wave and the subsequent variations in density need not be taken into ac-
count in the calculations (Bibl.2),

An integration of the hydrodynamic equations (assuming incompressibility)

leads to the equation for the pressure field in the form of [53
‘s 3 » ’ .
P=rot=grm[ T (1 — )+ @ +enin ] (3.1)

where p, is the pressure in the channel, p, is the density of the unperturbed
liquid, and R is the radial coordinate of the shock front.

The movement of the channel boundary is directly connected with the propa-
gation of the shock-wave front., The pulse transmitted once every second by the
channel to the ambient liquid equals the change in momentum of the liguid be-
tween the shock front and the channel, The integral of the pulse for the liquid

in this region is cut off by the radial coordinate of the shock front, which




eliminates the divergence of the integral.

The expression for the integral of the pulse reads

df 2npeurdr.

where u is the velocity of the liquid particles., From eq.(3.2), it follows

that

. i—-a/R .
Pa = 1-—-a’/R‘ [(aa +a%) a/R +a e /D (3-3)

The solution of the self-modeling problem of movement of the medium under
the action of a piston expanding at a constant rate leads to the conclusion that
the attendant shock wave also propagates at a constant rate and is characterized
by a constant pressure at its front. Experimental findings on shock waves gen-—
erated by underwater discharges confirm the constancy of the wave-front velocity
in the presence of a constant rate of channel expansion (Bibl.2). This justi-
fies the assumption that a" = 0, a/R = a'/D in egs.(3.1) and (3.3) which, after

logarithmic expansion, yields

3 g 2p°aD
P,=Pa+p°a ‘_(1.*2_‘):?/0):,' Po l+alD (3-&)

From the first equation in the system (3.L) it follows that, for a channel
the
expanding at a constant rate, the pressure atAshock front is lower than that in
the channel, From the Rankine-Hugoniot equations and the equation of con-

tinuity of incompressible fluids, we obtain the following formulas:

__ Py _..oa’ a’ b_ﬂl_’___ 4
uD_W': u.j 7 = b or P'A—l (3-5)

g v

(u = particle velocity at the wave front)

The substitution of eq.(3.5) into eq.(3..) results in two quadratic equa-
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tions with respect to the velocity of the front D; a comparison of their coef-
ficients yields the equation for determining the rate of expansion of the chan-

nel

' Y

L. The pressure in the channel can be expressed in the form of

kNT
Pe = ZaT

From this, taking into account eq.(3.6) and the constancy of the rate of /51

expansion, it follows that

1.8npula’e? ’
k

NT = (L.1)

Solving the system (2.4 ) with respect to NT and equating it with eq,(4.1)

we obtain the equation for a'

{5k+2 % [12 (2 )"- mk'- (m'f:::p 1,.}-: | Nw-" (Le2)

The second term in the denominator on the left-hand side of eq.(L.2) can be

neglected; then,

.b\$=%) \

‘= () (he3)

after which the plasma temperature in the channel can be obtained from the solu-

tion of eq.(2.L)

v;m;/' )‘ 1

T =f"(n)", f=6.5g (ml.-"'f’o"' 2 EmE (Lok)

From eq,(L4..) it follows that the plasma temperature remains constant in
the presence of a linear increase in the electric power delivered to the channel

by the discharge circuit., For the pulse discharges familiar from engineering
6



practice, the ratio v, varies within 3 x 10'* -~ 3 x 10"®* w/sec « m at which the
temperatures reach 10* - 2 x 10* °K, By reducing the circuit inductance to
0.26 phenry, Martin (Bibl.l) obtained a value of v; = 1.3 X 10 w/sec ° m, which
corresponds to a calculated temperature of 2,72 x 10* °K. The channel tempera~
ture depends only weakly on v,. This explains the fact that the retardation of
the discharge on introduction of an inductance is not accompanied by a marked
temperature drop.

Solution of the system (2,), for the number of particles in the channel N,

yields

_ (1) 12
T 24 /v + 5k (ra)e } (L.5)

and, for the density of the particle flux at the channel boundary,

. %"‘ ()" i .6
= () 2,/ v+ Sk/T (| (8.6)

According to eq.(k.6), the particle flux density in the channel is high,
being of the order of 10 - 10%®sec”*cm™®, For the particle density within the

channel, eqs,(4.3) and (4.5) yield

1.8 po’t (12)"

e,/ v+ 5k (yy)' (4.7)

In accordance with eq.(L.7), in the presence of a linear increase in the
pulses of the electric power, the density of the particles in the plasma is con-
stant. The decrease in density due to the expansion of the channel is compen— |
sated by the influx of particles across the channel wall. The particle density
is of the order of 10° - 10® cn™® and is more affected by the steepness of v,
than by the temperature,

For the plasma pressure, we have the relation /55
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Pa = 26,0/ v 4 5kf" (q;)%

At v, = const, the channel pressure does not change during the expansion,
in view of the constancy of the temperature and of the particle density., Under
normal conditions the pressures are of the order of 10° - 10° kg/cmz, but may
be higher if the pulse steepness is greater, The pressure depends on v; to a
greater extent than on the particle Aensity and to a much greater extent than on
the temperature, Hence, low pressures develop in inductance-inhibited dis-
charges at sufficiently high temperatures.

It follows from egs,(4.3) -~ (4.8) that, in the presence of a constant
steepness of the electric power pulse we are dealing with a steady-state regime
of channel expansion, at constant values of temperature, plasma density, plasma
pressure, and expansion rate., In this case, a shock front moves at constant
velocity and pressure ahead of the expanding channel,

This regime (or one close to it) occurs in underwater sparks from the in-
stant of formation of the discharge channel until the instant of maximum elec-
tric power, During this interval of time, the front and near-front regionsof
the shock wave take form., The steady-state character of the channel expansion
results in a trapezoidal shape of the pressure pulses in the shock wave.

5. For a pulse discharge in water, after substitution into egs.(4.3) -

(L.8) of the numerical values of the quantities, we obtain the following working

formulas:
@’ =7.9-40"% m/sec, T = 567K (5.1)
N= 4.3-10-1-;,:.’9-10-“1,'1- particles (5.2)
In= 30w f.;../;-to-wn'/- sec™im™ (5.3)
n= ahiy t (5.4)

4.3-40-194-3.9.10" 0 p,'
g8




4.5'10""'{1% u/m’ (505)

Pa= 4.3-10°1% 1 3.9.10-% 1, /e

In these formulas [v;] = w/sec « m,

Table 1 presents the results of calculations for several values of vy, as

they occur in the pulsed device at 4 = 3 cm,

TABLE 1

1 ’ Y e . .o

w7 tec | cm w/sec misec| T.°K IN—P':';'::? "‘,_..,,,,-- n, om-? ,‘qp,‘mn
2 3 3.3-401% | 188 10000 2,2-1010 5403 12.9.10% | 4£00
541018 3 | 1.7.40% { 280 | 43000 9.3.1010 1.4-10% | 5.4.10% | 1000
10 3 3.3.10 | 330 | 14600 1.7-107 2.2.10% 1 7.0.10% | 1500
5108 3 1.7.401% | 500 | 19000 | 7.2:-10® 5.9.10% |4.3.10% | 3800
108 3 3.3.40 | 600 | 21200 1.3.10% 9.0-100% | 1.7.10% | 5000

6. Constancy of the velocities and pressures of the shock wave is ensured

by the influx of energy from the channel to the shock front across the compressed
liquid.
From egs.(3.5) and (4.3) it follows, for the pressure at the shock front,
Pr="spemt o (6.1)
Substitution of eq.(3.5) into the equation derived by Kirkwood and Bethe /56
(Bibl.7) for shock waves in liquid media

D=+ sy a4 1u |

i

permits obtaining the equation for the velocity of the shock front D.

The solution of this equation reads
1 10p\'h
{1+[1+°”.',‘;$ ] = (), (6.2)

Here, co is the speed of sound in the unperturbed medium, and n is an ex~

ponent in the equation of state of the medium,




In accordance with eq.(6.2), for a steady-state regime of channel expan-
sion, the shock-wave velocity usually is within 1600 - 2000 m/sec, slightly in-
creasing with increasing v;.

After the electric power maximum is reached, the channel characteristics
(Ty n, pa) decrease in absolute value together with the energy transmitted to
the shock front, thus resulting in a decrease in its velocity and pressure,

The subsequent movement of the front is chiefly determined by the condi-
tions of divergence of the wave energy.

If the channel characteristics and shock front pressure in the regime of
steady-state expansion depend only on v;, then the wave pressure at a distance
from the channel depends not only on vy, but also, and to a marked degree, on the
rise time of the power pulse T,

In certain cases, variations in the circuit parameters V, L, C, 4 may lead
to opposite changes in y; and T; then the wave pressure at a distance from the
channel will undergo no substantial changes even if the channel characteristics
change markedly in magnitude,

After substitution of the numerical values for water, eqs.(6.1) and (6.2)
become

P, =647, n]m? | (6.3)
D =75100(1 + (1 4 4.4-10" 7,%)"] m/sec (6.14)

7. As a means of converting the electric energy into shock-wave energy,
underwater sparks are characterized by an electrohydrodynamic efficiency equal
to the ratio of the shock-wave energy to the electric energy delivered to the
spark channel by the discharge circuit.

According to egs.(2.1), (2.3), (L.L), and (L.5), for a steady-state regime
of channel expansion at y; = const, the electrohydrodynamic efficiency will have

10




the form

2k au %o
ﬂ"" /‘ T

- .1
26, /v + Sif g (7.1)

According to eq.(7.1), under normal conditions, Ty is 25 - 30%. In Sec-
tion 2, we pointed out that half of the energy transmitted to the shock wave is
represented by the energy of compression of the liquid and the other half, by
the kinetic energy of motion.,

For discharges in water, following substitution of the values, eq.(7.1) be-

N = 13.10-%4 3.0.10m 0"

comes y
1,6-10-m h‘l. - ;
(7.2)

Equations (7.1) and (7.2) determine T, only for the ascending segment of /57
the electric power pulse and cannot be used for calculating the efficiency of
the discharge as a whole, The conversion of electric energy to hydrodynamic
energy takes place continuously so long as power is delivered by the discharge
circuit. In addition, part of the energy of the vapor-gas cavity is converted
to hydrodynamic energy in the course of post-discharge processes,

Table 2 presents the results of calculations based on egs.(6.3), (6.L),

and (7.2).
TABLE 2

o/ .:7:'; n ‘g' , '
_ —
3.3:4000: 2.2
L.T00W 3.8
3.3.400 |- 1.4
1.7-1m - 02
3.3.100 2.4

Ioffe et al, (Bibl.8) used a different procedure in deriving a system of

equations for the rate of expansion of the channel and its pressure.
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8. The degree to which the theoretical findings agree with the experimental

data of a series of investigations is shown by Table 3,

TABLE 3
Experi- Circuit Parameter
mental v p "y '" A
Study N M- "‘ ’
(Bibl.1) | 29 9.8 6.3;3“
ggi:i.z; 0 | 27|17
ibl. 2 .
sl | ‘e | %o |3

The author is indebted to N.A.Roy and D.P.Frolov for the presentation of a

series of experimental findings,
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